
LA-UR-24-28965
Approved for public release; distribution is unlimited.

Title: MCNP6 Parallel Performance Analysis: How to Efficiently Run MCNP6 in
Parallel

Author(s): Bull, Jeffrey S.

Intended for: 2024 MCNP User Symposium, 2024-08-19/2024-08-14 (Los Alamos, New
Mexico, United States)

Issued: 2024-08-29 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

18/21/2024 18/21/2024Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

MCNP6 Parallel Performance
Analysis: How to Efficiently
Run MCNP6 in Parallel
Jeffrey Bull
XCP-3, MCNP Development Team

2024 MCNP® User Symposium

August 21, 2024

LA-UR-24-28965

28/21/2024

Introduction

To take advantage of multi-core computer architecture, MCNP6 provides two
independent methods to run problems in parallel: task-based threading using
OpenMP and distributed processing supported by the Message Passing Interface
(MPI).

How to setup and run MCNP6 in parallel depends on several factors, including
the computing hardware as well as the problem to be run. This presentation will
discuss how MCNP6 runs in parallel, present the results of several sample
problems with the goal of providing some insight on how to run MCNP in parallel
effectively.

38/21/2024

Comparison of Threading and MPI in MCNP6
Threading MPI

Ease of use Integrated into MCNP Requires additional software

Versatility Limited to neutron, photon, and electron
particles only -- No model physics

Works with all MCNP features

CPU utilization All processes transport particles Manager process only sends and collects data; it
does no particle transport

Memory usage Geometry and cross section data memory is
shared

No memory shared

CPU overhead Requires thread locks so that only one thread
at a time can run certain sections of the code

Each process runs independently

Inter-process data transfer
and collection

None – done internally Manager broadcasts data to individual processes
and collects the results when they are finished.

Number of parallel processes Limited to one core None -- can run across nodes of a cluster or
computers on a network

Except for UM preprocessing, only particle transport is run in parallel.

48/21/2024

Sample Problem: Godiva
Godiva Solid Bare HEU sphere HEU-MET-FAST-001

1 1 4.7984e-02 -1 imp:n=1
2 0 1 imp:n=0

1 so 8.7407

prdmp j -1e6 j 1 1e9
sdef cel=1 erg=d1 rad=d2 pos=0.0 0.0 0.0
sp1 -3
si2 0.0 8.7407
sp2 -21 2
totnu
c ------------- ENDF/B-VII ---------------
m1 92234.70c 4.9184e-04
 92235.70c 4.4994e-02
 92238.70c 2.4984e-03
c ---
print
kcode 10000 1.0 80 800

58/21/2024

Run godiva
time mcnp6 i= godiva.inp
.
 source distribution written to file srctq
cycle= 800
 run terminated when 800 kcode cycles were
done.

 =====> 409.14 M histories/hr (based on wall-
clock time in mcrun)

comment.
 comment. Average fission-source entropy for the last
half of cycles:
 comment. H= 7.42E-01 with population std.dev.=
1.40E-03
 comment.
 comment.
 comment. Cycle 17 is the first cycle having fission-
source

comment. entropy within 1 std.dev. of the average
 comment. entropy for the last half of cycles.
 comment. At least this many cycles should be
discarded.
 comment. Source entropy convergence check passed.
 comment.

final k(col/abs/trk len) = 0.999574 std dev =
0.000217

 ctm = 1.17 nrn = 411408359
 dump 2 on file runtpf.h5 nps = 8001005 coll =
29312333
 mcrun is done

real 1m12.282s
user 1m5.402s
sys 0m6.060s

68/21/2024

Run godiva with 2 threads
time mcnp6 i= godiva.inp tasks 2
.
 source distribution written to file srctq cycle=
800
 run terminated when 800 kcode cycles were done.

 =====> 815.62 M histories/hr (based on wall-clock
time in mcrun)

 comment.
 comment. Average fission-source entropy for the last
half of cycles:
 comment. H= 7.42E-01 with population std.dev.=
1.40E-03
 comment.
 comment.
 comment. Cycle 17 is the first cycle having fission-
source

comment. entropy within 1 std.dev. of the average
 comment. entropy for the last half of cycles.
 comment. At least this many cycles should be
discarded.
 comment.
 comment. Source entropy convergence check passed.
 comment.

 final k(col/abs/trk len) = 0.999574 std dev =
0.000217

 ctm = 1.15 nrn = 411408359
 dump 2 on file runtpg.h5 nps = 8001005 coll =
29312333
 mcrun is done

real 0m36.655s
user 1m8.906s
sys 0m3.052s

78/21/2024

Godiva Timing Results for Different Numbers of Tasks
Number of Tasks

1 =====> 409.14 M histories/hr

2 =====> 815.62 M histories/hr

4 =====> 1353.13 M histories/hr

8 =====> 2029.36 M histories/hr

Number of Tasks

1 ctm = 1.17 nrn = 411408359

2 ctm = 1.15 nrn = 411408359

4 ctm = 1.36 nrn = 411408359

8 ctm = 1.79 nrn = 411408359

Number of Tasks

1 real 1m12.282s

2 real 0m36.655s

4 real 0m22.637s

8 real 0m15.561s

88/21/2024

Godiva Threading Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Hi
st

or
ie

s/
Ru

n
Ti

m
e/

N
um

be
r o

f T
as

ks

(n
or

m
al

ize
d)

Ru
n

Ti
m

e
(m

in
ut

es
)

Number or Tasks

Godiva Run Time

Godiva Efficiency

98/21/2024

• Linux RedHat 8.10
• Intel Xeon(R) CPU E5-2600 v3,

Haswell
− 2 sockets
− 10 cores/socket
− Hyperthreading on
 20 logical CPUs/socket

− 2 NUMA nodes, one per socket

Computer Hardware Used For This Analysis

108/21/2024

Intel Vtune Profiler

118/21/2024

Godiva CPU Cycle Breakdown

Top-level CPU Time (seconds)
Number of Tasks

1 8 40
Total CPU Time 278 230 2,693

Time spent executing MCNP 261 161 268
Time threads are locked 2 24 774

Time spent managing the threads (overhead) 14 44 1,650
Effective CPU utilization 1.0 5.4 3.5
Elapsed Time 280 30 77

128/21/2024

How is MCNP Using CPU Cycles

1 task

8 tasks

Spin and overheadIdleRunning MCNP

138/21/2024

How is MCNP Using CPU Cycles – 40 Tasks

Spin and overheadIdleRunning MCNP

148/21/2024

What’s Causing the Spin and Overhead Time?

Function CPU Time (s) % of CPU Time
acetot 30 10.80%
uname 25 9.10%
acecol 24 8.80%
getrusage 22 7.90%
colidn 17 6.10%
[Others] 159 57.30%

Function CPU Time (s) % of CPU Time
__kmpc_set_lock 2,291 85.10%
__kmp_fork_barrier 100 3.70%
acetot 35 1.30%
acecol 27 1.00%
colidn 22 0.80%
[Others] 217 8.10%

1 task 40 tasks

For criticality problems, source particles are processed one thread at a time.

158/21/2024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Hi
st

or
ie

s/
Ru

n
Ti

m
e/

N
um

be
r o

f T
as

ks
 (n

or
m

al
ize

d)

Ru
n

Ti
m

e
(m

in
ut

es
)

Number or Processors

Godiva Threading and MPI Performance

Run Time -- Threading

Run Time -- MPI

Efficiency -- Threading

Efficiency -- MPI

Hyperthreading!!

168/21/2024

Sample Problem 2: PWR initial core, 2D model, 17x17 bundles
pwr2d-whole - PWR initial core, 2D model, 17x17 bundles
c 2.1%, 2.6%, and 3.1% enrichment for assemblies
c Taken from "Whole Core Calculations of Power Reactors
c by Use of Monte Carlo Method" by Nakagawa and Mori,
c J. Nuc. Sci. and Tech., 30(7), 692-701 (1993)
c
1 1 6.60783e-2 -1 u=1 $ UO2 2.1%
2 5 4.310700e-2 1 -2 u=1 $ Zr
3 4 6.622400e-2 2 u=1 $ H2O
c
4 2 6.60798e-2 -1 u=2 $ UO2 2.6%
5 5 4.310700e-2 1 -2 u=2 $ Zr
6 4 6.622400e-2 2 u=2 $ H2O
c
7 3 6.60913e-2 -1 u=3 $ UO2 3.1%
8 5 4.310700e-2 1 -2 u=3 $ Zr
9 4 6.622400e-2 2 u=3 $ H2O
c
10 4 6.622400e-2 -3 u=4 $ H2O
11 5 4.310700e-2 3 -4 u=4 $ Zr
12 4 6.622400e-2 4 u=4 $ H2O
c
c ----- lattice of fuel/water, 2.1% enrichment
13 0 -5 lat=1 u=5 fill= -8:8 -8:8 0:0
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 4 1 1 4 1 1 4 1 1 1 1 1
 1 1 1 4 1 1 1 1 1 1 1 1 1 4 1 1 1

178/21/2024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

Hi
st

or
ie

s/
Ru

n
Ti

m
e/

N
um

be
r o

f T
as

ks
 (n

or
m

al
ize

d)

Ru
n

Ti
m

e
(m

in
ut

es
)

Number or Processors

PWR Initial Core Threading and MPI Performance

Run Time -- Threading

Run Time -- MPI

Efficiency -- Threading

Efficiency -- MPI

188/21/2024

Sample Problem 3: Fixed Source with 7.5 Million Tally Bins
Transport neutrons through void, tallying using F4 tallies
c Air cells
2001 1 -1.29300E-03 -2101 30 -32 imp:n=1 $imp:n= 1
2002 1 -1.29300E-03 -2102 2101 30 -32 imp:n=1 $imp:n= 2
2003 1 -1.29300E-03 -2103 2102 30 -32 imp:n=1 $imp:n= 4
2004 1 -1.29300E-03 -2104 2103 30 -32 imp:n=1 $imp:n= 8
2005 1 -1.29300E-03 -2105 2104 30 -32 imp:n=1 $imp:n= 16
2006 1 -1.29300E-03 -2106 2105 30 -32 imp:n=1 $imp:n= 32
2007 1 -1.29300E-03 -2107 2106 30 -32 imp:n=1 $imp:n= 64
2008 1 -1.29300E-03 -2108 2107 30 -32 imp:n=1 $imp:n= 128
2009 1 -1.29300E-03 -2109 2108 30 -32 imp:n=1 $imp:n= 256
2010 1 -1.29300E-03 -2110 2109 30 -32 imp:n=1 $imp:n= 512
2011 1 -1.29300E-03 -2111 2110 30 -32 imp:n=1 $imp:n= 1024
2012 1 -1.29300E-03 -2112 2111 30 -32 imp:n=1 $imp:n= 2048
2013 1 -1.29300E-03 -2113 2112 30 -32 imp:n=1 $imp:n= 4096
2014 1 -1.29300E-03 -2114 2113 30 -32 imp:n=1 $imp:n= 8192
2015 1 -1.29300E-03 -2115 2114 30 -32 imp:n=1 $imp:n= 16384

................
f104:n 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
2021 2022 2023 2024 2025

f114:n 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
3021 3022 3023 3024 3025

e0 1e-6 999ilog 15
t0 1 98i 1e6
cf104 2010

Tally Bins

102 5,010,000

114 2,505,000

Total 7,515,000Each task requires an additional 250 MB of memory

198/21/2024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

Hi
st

or
ie

s/
Ru

n
Ti

m
e/

N
um

be
r o

f T
as

ks
 (n

or
m

al
ize

d)

Ru
n

Ti
m

e
(m

in
ut

es
)

Number or Processors

Fixed Source With 7.5 Million Tally Bins -- Threading and MPI Performance

Run Time -- Threading

Run Time -- MPI

tfc_air_f4

tfc_air_f4

208/21/2024

Fixed Source w/ 7.5 M Tally Bins -- CPU Cycle Utilization

8 tasks

Spin and overheadIdleRunning MCNP

Note that the frequency of spin and overhead spikes decrease later in the problem

218/21/2024

Tally Fluctuation Charts
• To calculate a point for the tally fluctuation chart, MCNP stops transporting

particles and collects the tally results.

• MCNP begins by calculating TFC points every 1000 histories. But since the TFC
chart is limited to 20 points, after MCNP calculates the 20th point, the TFC chart
is trimmed down to 10 points and MCNP doubles the number of histories run
between the TFC point calculations.

• The initial value of 1000 histories per TFC point can be changed using the 5th
entry of the PRDMP card.
− MPI runs automatically set this value to NPS/10.
− Except for problems with point detectors that use Russian Roulette to limit small

contributions AND which ki on the DD card is negative. This is the default for F5 tallies.

228/21/2024

How to find the best way to run a problem? Test Runs!!

Run time (minutes) using all 40 Logical CPUs

Parallel setup Godiva PWR Initial Core 7.5 M tally bins

nmpi 3, tasks 20 22.67 7.97 9.83

nmpi 5, tasks 10 14.40 5.83 5.82

nmpi 6, tasks 8 19.12 7.80 7.88

nmpi 9, tasks 5 10.70 5.82 5.75

nmpi 11, tasks 4 10.42 5.88 5.82

nmpi 21, tasks 2 10.63 6.08 6.28

238/21/2024

Summary
• Discussed how MCNP uses threading and MPI to run problems in parallel

• Parallel timing studies for a few MCNP problems were performed. These
studies showed that:
− MCNP does not take advantage of the extra logical CPU cores provided by

hyperthreading
− Source particles are not process in parallel for criticality problems
− Increasing the number of histories between TFC points can significantly improve

performance in thread only problems

• Conduct several test runs to determine which combination of threading and
MPI is the most effective for a problem.

	MCNP6 Parallel Performance Analysis: How to Efficiently Run MCNP6 in Parallel
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

