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Introduction

To take advantage of multi-core computer architecture, MCNP6 provides two 
independent methods to run problems in parallel: task-based threading using 
OpenMP and distributed processing supported by the Message Passing Interface 
(MPI). 

How to setup and run MCNP6 in parallel depends on several factors, including 
the computing hardware as well as the problem to be run.  This presentation will 
discuss how MCNP6 runs in parallel, present the results of several sample 
problems with the goal of providing some insight on how to run MCNP in parallel 
effectively. 
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Comparison of Threading and MPI in MCNP6
Threading MPI

Ease of use Integrated into MCNP Requires additional software

Versatility Limited to neutron, photon, and electron 
particles only -- No model physics

Works with all MCNP features

CPU utilization All processes transport particles Manager process only sends and collects data; it 
does no particle transport 

Memory usage Geometry and cross section data memory is 
shared

No memory shared

CPU overhead Requires thread locks so that only one thread 
at a time can run certain sections of the code

Each process runs independently

Inter-process data transfer 
and collection

None – done internally Manager broadcasts data to individual processes 
and collects the results when they are finished.

Number of parallel processes Limited to one core None -- can run across nodes of a cluster or 
computers on a network

Except for UM preprocessing, only particle transport is run in parallel.
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Sample Problem:  Godiva
Godiva  Solid Bare HEU sphere  HEU-MET-FAST-001

1         1        4.7984e-02         -1        imp:n=1
2         0                            1        imp:n=0
 
1         so       8.7407

prdmp j -1e6 j 1 1e9
sdef   cel=1     erg=d1    rad=d2    pos=0.0 0.0 0.0
sp1    -3
si2    0.0    8.7407
sp2    -21    2
totnu
c ------------- ENDF/B-VII ---------------
m1        92234.70c   4.9184e-04
          92235.70c   4.4994e-02
          92238.70c   2.4984e-03
c -----------------------------------------
print
kcode     10000   1.0   80    800
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Run godiva
time mcnp6 i= godiva.inp
. . . . . . . . . . . 
 source distribution written to file srctq        
cycle=   800
      run terminated when     800 kcode cycles were 
done.

 =====>     409.14 M histories/hr    (based on wall-
clock time in mcrun)
 
comment.
 comment. Average fission-source entropy for the last 
half of cycles:
 comment.      H=  7.42E-01  with population std.dev.=  
1.40E-03
 comment.
 comment.
 comment. Cycle   17 is the first cycle having fission-
source
 

comment.   entropy within 1 std.dev. of the average
 comment.   entropy for the last half of cycles.
 comment.   At least this many cycles should be 
discarded.
 comment. Source entropy convergence check passed.
 comment.

final k(col/abs/trk len) = 0.999574     std dev = 
0.000217

 ctm =        1.17   nrn =         411408359
 dump    2 on file runtpf.h5   nps =     8001005   coll =         
29312333
 mcrun  is done

real    1m12.282s
user    1m5.402s
sys     0m6.060s
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Run godiva with 2 threads
time mcnp6 i= godiva.inp tasks 2
. . . . . . . . . . . 
 source distribution written to file srctq        cycle=   
800
      run terminated when     800 kcode cycles were done.

 
 =====>     815.62 M histories/hr    (based on wall-clock 
time in mcrun)

 comment.
 comment. Average fission-source entropy for the last 
half of cycles:
 comment.      H=  7.42E-01  with population std.dev.=  
1.40E-03
 comment.
 comment.
 comment. Cycle   17 is the first cycle having fission-
source
 

comment.   entropy within 1 std.dev. of the average
 comment.   entropy for the last half of cycles.
 comment.   At least this many cycles should be 
discarded.
 comment.
 comment. Source entropy convergence check passed.
 comment.

 final k(col/abs/trk len) = 0.999574     std dev = 
0.000217

 ctm =        1.15   nrn =         411408359
 dump    2 on file runtpg.h5   nps =     8001005   coll =         
29312333
 mcrun  is done

real    0m36.655s
user    1m8.906s
sys     0m3.052s
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Godiva Timing Results for Different Numbers of Tasks
Number of Tasks

1 =====>     409.14 M histories/hr

2 =====>     815.62 M histories/hr

4 =====>    1353.13 M histories/hr

8 =====>    2029.36 M histories/hr

Number of Tasks

1 ctm =        1.17   nrn =         411408359

2 ctm =        1.15   nrn =         411408359

4 ctm =        1.36   nrn =         411408359

8 ctm =        1.79   nrn =         411408359

Number of Tasks

1 real    1m12.282s

2 real    0m36.655s

4 real    0m22.637s

8 real    0m15.561s
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Godiva Threading Performance
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• Linux RedHat 8.10
• Intel Xeon(R) CPU E5-2600 v3, 

Haswell
− 2 sockets
− 10 cores/socket
− Hyperthreading on
 20 logical CPUs/socket

− 2 NUMA nodes, one per socket

Computer Hardware Used For This Analysis
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Intel Vtune Profiler
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Godiva CPU Cycle Breakdown

Top-level CPU Time (seconds)
Number of Tasks

1 8 40
Total CPU Time 278 230 2,693

Time spent executing MCNP 261 161 268
Time threads are locked 2 24 774

Time spent managing the threads (overhead) 14 44 1,650
Effective CPU utilization 1.0 5.4 3.5
Elapsed Time 280 30 77
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How is MCNP Using CPU Cycles

1 task

8 tasks

Spin and overheadIdleRunning MCNP
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How is MCNP Using CPU Cycles – 40 Tasks

Spin and overheadIdleRunning MCNP
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What’s Causing the Spin and Overhead Time?

Function CPU Time (s) % of CPU Time
acetot 30 10.80%
uname 25 9.10%
acecol 24 8.80%
getrusage 22 7.90%
colidn 17 6.10%
[Others] 159 57.30%

Function CPU Time (s) % of CPU Time
__kmpc_set_lock 2,291 85.10%
__kmp_fork_barrier 100 3.70%
acetot 35 1.30%
acecol 27 1.00%
colidn 22 0.80%
[Others] 217 8.10%

1 task 40 tasks

For criticality problems, source particles are processed one thread at a time.
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Sample Problem 2:  PWR initial core, 2D model, 17x17 bundles
pwr2d-whole - PWR initial core, 2D model, 17x17 bundles
c  2.1%, 2.6%, and 3.1% enrichment for assemblies
c  Taken from "Whole Core Calculations of Power Reactors
c  by Use of Monte Carlo Method" by Nakagawa and Mori,
c  J. Nuc. Sci. and Tech., 30(7), 692-701 (1993)
c 
1  1  6.60783e-2    -1          u=1    $ UO2 2.1%
2  5  4.310700e-2    1   -2     u=1    $ Zr
3  4  6.622400e-2    2          u=1    $ H2O
c
4  2  6.60798e-2    -1          u=2    $ UO2 2.6%
5  5  4.310700e-2    1   -2     u=2    $ Zr
6  4  6.622400e-2    2          u=2    $ H2O
c
7  3  6.60913e-2    -1          u=3    $ UO2 3.1%
8  5  4.310700e-2    1   -2     u=3    $ Zr
9  4  6.622400e-2    2          u=3    $ H2O
c
10  4  6.622400e-2   -3         u=4    $ H2O
11  5  4.310700e-2    3   -4    u=4    $ Zr
12  4  6.622400e-2    4         u=4    $ H2O
c
c ----- lattice of fuel/water, 2.1% enrichment
13  0       -5    lat=1         u=5   fill=  -8:8  -8:8 0:0
            1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
            1 1 1 1 1 4 1 1 4 1 1 4 1 1 1 1 1 
            1 1 1 4 1 1 1 1 1 1 1 1 1 4 1 1 1
 ................
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Sample Problem 3:  Fixed Source with 7.5 Million Tally Bins
Transport neutrons through void, tallying using F4 tallies
c  Air cells
2001  1  -1.29300E-03  -2101        30 -32  imp:n=1  $imp:n= 1
2002  1  -1.29300E-03 -2102  2101  30 -32  imp:n=1  $imp:n= 2
2003  1  -1.29300E-03 -2103  2102  30 -32  imp:n=1  $imp:n= 4
2004  1  -1.29300E-03 -2104  2103  30 -32  imp:n=1  $imp:n= 8
2005  1  -1.29300E-03 -2105  2104  30 -32  imp:n=1  $imp:n= 16
2006  1  -1.29300E-03 -2106  2105  30 -32  imp:n=1  $imp:n= 32
2007  1  -1.29300E-03 -2107  2106  30 -32  imp:n=1  $imp:n= 64
2008  1  -1.29300E-03 -2108  2107  30 -32  imp:n=1  $imp:n= 128
2009  1  -1.29300E-03 -2109  2108  30 -32  imp:n=1  $imp:n= 256
2010  1  -1.29300E-03 -2110  2109  30 -32  imp:n=1  $imp:n= 512
2011  1  -1.29300E-03 -2111  2110  30 -32  imp:n=1  $imp:n= 1024
2012  1  -1.29300E-03 -2112  2111  30 -32  imp:n=1  $imp:n= 2048
2013  1  -1.29300E-03 -2113  2112  30 -32  imp:n=1  $imp:n= 4096
2014  1  -1.29300E-03 -2114  2113  30 -32  imp:n=1  $imp:n= 8192
2015  1  -1.29300E-03 -2115  2114  30 -32  imp:n=1  $imp:n= 16384

................
f104:n  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
2021 2022 2023 2024 2025 

f114:n 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
3021 3022 3023 3024 3025 

e0 1e-6 999ilog 15 
t0 1 98i 1e6 
cf104 2010 

Tally Bins

102 5,010,000

114 2,505,000

Total 7,515,000Each task requires an additional 250 MB of memory 
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Fixed Source w/ 7.5 M Tally Bins -- CPU Cycle Utilization

8 tasks

Spin and overheadIdleRunning MCNP

Note that the frequency of spin and overhead spikes decrease later in the problem
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Tally Fluctuation Charts
• To calculate a point for the tally fluctuation chart, MCNP stops transporting 

particles and collects the tally results. 

• MCNP begins by calculating TFC points every 1000 histories. But since the TFC 
chart is limited to 20 points, after MCNP calculates the 20th point, the TFC chart 
is trimmed down to 10 points and MCNP doubles the number of histories run 
between the TFC point calculations.

• The initial value of 1000 histories per TFC point can be changed using the 5th 
entry of the PRDMP card.  
− MPI runs automatically set this value to NPS/10.
− Except for problems with point detectors that use Russian Roulette to limit small 

contributions AND which ki on the DD card is negative. This is the default for F5 tallies. 
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How to find the best way to run a problem? Test Runs!!

Run time (minutes) using all 40 Logical CPUs

Parallel setup Godiva PWR Initial Core 7.5 M tally bins

nmpi 3, tasks 20 22.67 7.97 9.83

nmpi 5, tasks 10 14.40 5.83 5.82

nmpi 6, tasks 8 19.12 7.80 7.88

nmpi 9, tasks 5 10.70 5.82 5.75

nmpi 11, tasks 4 10.42 5.88 5.82

nmpi 21, tasks 2 10.63 6.08 6.28
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Summary
• Discussed how MCNP uses threading and MPI to run problems in parallel

• Parallel timing studies for a few MCNP problems were performed. These 
studies showed that:
− MCNP does not take advantage of the extra logical CPU cores provided by 

hyperthreading
− Source particles are not process in parallel for criticality problems
− Increasing the number of histories between TFC points can significantly improve 

performance in thread only problems

• Conduct several test runs to determine which combination of threading and 
MPI is the most effective for a problem.
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