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Nuclear Data Pipeline

* The nuclear data pipeline is a visualization of the process of how
measured and theorized quantities are verified, validated, and processed
into a format accessible to nuclear data users

* United States nuclear data library ENDF/B-I was released in June 1968!

* Many tools and approaches have been developed to traverse the pipeline
in the most efficient way possible — this process involves many feedback
loops not shown below

‘@ NngosN A!gmgﬁ D. Brown, “Nuclear Data Pipeline,” Workshop for Applied Nuclear Data Activities (2023) .



Nuclear Data Pipeline: Experiment

* Experimental measurements are used to
constrain nuclear data uncertainties as
much as possible and test evaluated files in
our physics codes

* Measurement types:

1. Differential
2. Integral

» Differential measurements include

neutron cross section measurements as a
function of incident neutron energy,
capture gamma cascades, fission fragment

Los Alamos Neutron Science Center (LANSCE)

yields, etc.

(<

Los Alamos P. Lisowski et al., “The Los Alamos Neutron Science Center,” Nuclear Instruments and Methods in Physics
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¢ Measurement types:
1. Differential

2. Integral

e Integral measurements include
nuclear criticality experiments
(measure multiplication of the
system to infer effective neutron
multiplication factor ke¢r) and
shielding measurements

National Criticality Experiments
Research Center (NCERC)

Picture of me next to the
EUCLID experiment

‘5 Los Alamos “National Criticality Experiments Research Center (NCERC): The First 10 Years of
-~ Operation,” Nuclear Science and Engineering 195 Supplement 1 (2021)
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Nuclear Criticality Experiments

* The National Criticality Experiments Research Center (NCERC) 1s the only
general-purpose criticality experiments facility in the United States
* 4 Critical Assembly Machines:

‘5 Los Alamos “National Criticality Experiments Research Center (NCERC): The First 10 Years of
= NATIONALLABORATORY  Operation,” Nuclear Science and Engineering 195 Supplement 1 (2021)



PARADIGM Project

* PARADIGM stands for PARallel Approach of Differential and InteGral Measurements

Goal: Reduce 2*°Pu nuclear data uncertainty in the intermediate-energy range using new nuclear
data theory, differential measurements, integral measurements, and statistical analysis

* Simultaneous design of criticality experiment, normally referred to as an “integral
experiment,” and differential measurement using machine learning decreases amount of time
for initial steps of nuclear data pipeline

* “Intermediate-energy range” is normally defined in textbooks from ~1 eV to 100 keV — the
energy range of interest for this work is focused specifically on 1 keV to 600 keV

* The work in this talk will focus on optimization of integral experiment design
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Low-fidelity MCNP Model

Modeling Approach:

(1) Define a unit of materials, geometry (e.g.,
rectangular/cylindrical), reflector, and total
number of units N

(2) Set up cell and surface cards for 1 unit and
then repeat N times — RPP/RCC Surface Cards

(3) Determine fuel regions for KSRC points
(k-eigenvalue calculation)

(4) Set up data cards (i.e., KCODE, KSRC,
KOPTS, tally cards, KSEN)

5.3.4.2 RPP: Rectangular Parallelepiped

RPP xmin xmax ymin ymax zmin zmax

Xmin xmax Termini of box sides normal to the x axis.
ymin ymax Termini of box sides normal to the y axis.
zmin zmax Termini of box sides normal to the z axis.

5.3.4.4 RCC: Right Circular Cylinder

RCC vx vy vz h1 h2 h3 r

VX vy vz The (z,vy, z) coordinates at the center of the base for the right circular
cylinder.
h1 h2 h3 Right circular cylinder axis vector, which provides both the orientation and

the height of the cylinder.

r Radius of cylinder.

1% Los Alamos , -
~a=" NATIONAL LABORATORY J. Kulesza et al., “MCNP® Code Version 6.3.0 Theory & User Manual,” (2022), LA-UR-22-30006.



Low-fidelity MCNP Model
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Genetic Algorithm Background

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

OR THE

PRESERVATION OF FAVOURED RACES IN THE STRUGGLE
FOR LIFE.

By CHARLES DARWIN, M.A.,
FELLOW OF THE ROYAL, ETC., \DCHITIJS;
S. BEAGLE'S VOYAGE

LONDON:

JOTIN MURRAY, ALBEMARLE STREET.

1859.

The right of Translation is reserved.

l —| Crossover

Child1| (11|00 |1 (0|10

Child 2 1/{0|{1|]0|1(0(O0(0O

— Mutation

Child2| [1[1|[1]o|[1]0]0]0

Crossover between parents (i.e., experiment
designs) 1s probabilistic — the Wheel of Fortune
is an easy way to think about this - larger slices
of the Wheel (i.e., higher probability of design
getting selected for crossover) based on design
“fitness”

Fitness is determined by an objective function,
or figure of merit (FoM)

‘s Los Alamos C. Darwin, L. Kebler, “On the origin of species by means of natural selection, or the preservation of

NATIONAL LABORATORY

favoured races in the struggle for life,” London: J. Murray (1859), https://Iccn.loc.gov/06017473
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Verification of Genetic Algorithm

Verification of the genetic algorithm to converge to global solution

Two things to test: (1) convergence rate and (2) solution comparison to baseline
Benchmarked cases of the early Jemima experiments (ICSBEP designation of
IEU-MET-FAST-001) were used as a baseline

Verification goal: converge to solution that shows similar performance to or
outperforms baseline set based on calculated FoM
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‘5 Los Alamos N. Kleedtke et al., “Geneti'c Algorithm Optimization of Nuclear C‘rit@cality Experimer}t
%a¥ NATIONAL LABORATORY for Reduction of Intermediate-energy 2*Pu Nuclear Data Uncertainties,” (In Preparation)



Verification of Genetic Algorithm
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"3 Los Alomos N. Kleedtke et al., “Genetic Algorithm Optimization of Nuclear Criticality Experiment
‘. NATIONAL LABORATORY
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PARADIGM Optimized Experiment Design

* Optimized experiment design for designs with and without a reflector

* Results shown for 1 of the 3 final optimized experiment designs with
copper reflector:

(1) Alumina, Graphite, Boron, Zero Power Physics Reactor (ZPPR)

Plutonium Aluminum No-Nickel (PANN) plates, Boron, Graphite, Alumina

(2) Alumina, Graphite, ZPPR Plates, Graphite, Alumina

(3) Alumina, Boron, ZPPR Plates, Boron, Alumina

* 14 total units on Comet assembly machine

» ZPPR plates were arranged in 4x5 array (1.e., 25.40 cm by 30.48 cm) —
set to the same dimensions of the Chlorine Worth Study (CWS)
experiment fuel configuration

* 30 cm uniform copper reflector, which is similar to outer dimensions of
ZEUS copper reflector

‘5 Los Alomos N. Kleedtke et al., “Geneti.c Algorithm Optimization of Nuclear C‘rit?cality Experimel.lt
=% NATIONAL LABORATORY for Reduction of Intermediate-energy >3°Pu Nuclear Data Uncertainties,” (In Preparation)
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PARADIGM Optimized Experiment Design

Alumina (cm)

Boron (cm)

Los Alamos
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N. Kleedtke et al., “Genetic Algorithm Optimization of Nuclear Criticality Experiment
for Reduction of Intermediate-energy >3°Pu Nuclear Data Uncertainties,” (In Preparation)
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PARADIGM Optimized Experiment Design

* Obvious trendlines — trendline for Boron with respect to sensitivity shows inflection
* Designs with highest objective function values are too heavy — need expert-in-the-
loop for final design considerations

Los Alamos
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Conclusions

* Optimized 3 experiment designs (14 units) with copper reflector:

(1) Alumina, Graphite, Boron, Zero Power Physics Reactor (ZPPR) Plutonium Aluminum
No-Nickel (PANN) plates, Boron, Graphite, Alumina

(2) Alumina, Graphite, ZPPR Plates, Graphite, Alumina

(3) Alumina, Boron, ZPPR Plates, Boron, Alumina (shown in this presentation)

* Optimized experiment designs for all 3 configurations have heights and weights that
exceed the Comet assembly machine operational safety limitations; therefore, final
experiment design analysis is needed before procurement of parts

» Additional detail is needed for high fidelity design — see P. Brain et al., “Impact of Higher
Fidelity Design Iterations on Critical System Criteria” 2024 MCNP User Symposium
presentation

* Optimization algorithms, such as the genetic algorithm used in this work, Gaussian
process, or particle swarm optimization (PSO) should be used in place of traditional
iterative methods to save both time and effort

* Objective function could be revisited to include similarity (e.g., correlation coefficient)
and/or nuclear data-induced uncertainty for more targeted design

* Genetic algorithm could include material ordering and material selection in future
optimization runs

Los Alamos
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