Information Based Analysis of Fission Source Correlation

Brian Kiedrowski a & Forrest Brown b

a University of Wisconsin, Madison, WI, USA
b Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

Information Based Analysis of Fission Source Correlation

Brian Kiedrowski (Univ. Wisconsin) & Forrest Brown (LANL)

The variances estimated by Monte Carlo codes in k-eigenvalue calculations are underpredicted due to inter-cycle correlation between fission sources. The mutual information serves as a diagnostic to measure the correlation between fission source distributions in different cycles. There is a definite observed relationship between the variance bias and the mutual information of the source distributions. Furthermore, using the mutual information in conjunction with the Wielandt method shows how effective a particular Wielandt shift is at removing variance bias. Finally, the dominance ratio and the mutual information are related to MacMillan’s correction.
Overview

- Fission source correlation
- Mutual Information
- Application to Wielandt Method
- Relationship to Dominance Ratio

MCNP Criticality Calculations

- Power iteration method:

 Initial Guess | Batch 1 $K_{\text{eff}}^{(1)}$ | Batch 2 $K_{\text{eff}}^{(2)}$ | Batch 3 $K_{\text{eff}}^{(3)}$ | Batch 4 $K_{\text{eff}}^{(4)}$

 - Source particle generation
 - Monte Carlo random walk
 - Neutron
Fission neutrons in following generations tend to be near the source neutron in the previous generations.

- Correlation always positive

- Causes underprediction of variance:

Apparent Variance: \[\tilde{\sigma}_x^2 = \frac{1}{N} \left[\frac{1}{N-1} \sum_{i=1}^{N} x_i^2 - \bar{x}^2 \right] \]

Empirical Variance: \[\sigma_x^2 = \tilde{\sigma}_x^2 + \sum_{i,j} r_{ij} \]
Most Monte Carlo codes give apparent error

Should give empirical error
- MacMillan’s factor (highly conservative)
- Lag coefficients (subject to stochastic noise)
- Brute force method (very time consuming)
 - Average numerous (25-100+) results from calculations with different random number seeds.
Variance Bias

- Small impact on k-effective (5-20%).
- Significant impact on local tallies:

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Tally $\frac{\sigma}{\bar{\sigma}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godiva</td>
<td>1.43</td>
</tr>
<tr>
<td>Two Cylinder</td>
<td>4.56</td>
</tr>
<tr>
<td>B&W Core</td>
<td>3.34</td>
</tr>
<tr>
<td>Checkerboard</td>
<td>3.97</td>
</tr>
</tbody>
</table>

Ergodicity of Fission Source

- Intercycle correlation should decrease with separation distance.
- True if fission source transition is an ergodic Markov chain.
- Ergodic: Loss of memory of initial state after many transitions.
 - Fission matrix for j transitions step measures.
 - Final state independent of initial state.
Ergodicity of Fission Source

Evolution of the Markov Transition Matrix for the Godiva Benchmark

- Information about initial state lost each transition.
- Loss of information implies loss of correlation
 - Final state independent of initial state
- Since correlation leads to variance bias, can some simple measure help estimate this?
Mutual Information

- Measures information gained about an unmeasured result from the measurement of another.

\[I(X, Y) = H(Y) - H(Y | X) \]

- Measured from fission matrix elements:

\[I = \sum_i \sum_j F_{ij} \log \left(\frac{F_{ij}}{f_i f_j} \right) \]

Mutual Information

- Measures correlation between fission populations in one generation to the next.

- As separation distance increases to infinity, mutual information goes to zero.

\[F_{ij} = f_i f_j \]

\[I = \sum_i \sum_j f_i f_j \log \left(\frac{f_i f_j}{f_i f_j} \right) = 0 \]
Mutual Information Decay

Mutual Information of the Two Cylinder Benchmark w/ Power Iteration Method

Mutual Information Convergence

- Mutual information sensitivity to mesh size for Godiva problem.

<table>
<thead>
<tr>
<th>Mesh Spacing</th>
<th>Mutual Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3x3</td>
<td>0.233</td>
</tr>
<tr>
<td>4x4x4</td>
<td>0.225</td>
</tr>
<tr>
<td>5x5x5</td>
<td>0.217</td>
</tr>
<tr>
<td>6x6x6</td>
<td>0.211</td>
</tr>
</tbody>
</table>
Mutual Information Convergence

- Mutual information sensitivity to batch size for Godiva problem (3x3x3 mesh).

<table>
<thead>
<tr>
<th>Batch Size (histories)</th>
<th>Mutual Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>0.558</td>
</tr>
<tr>
<td>10^3</td>
<td>0.327</td>
</tr>
<tr>
<td>10^4</td>
<td>0.241</td>
</tr>
<tr>
<td>10^5</td>
<td>0.230</td>
</tr>
<tr>
<td>10^6</td>
<td>0.229</td>
</tr>
</tbody>
</table>

Wielandt Method

- Stochastically extends the number of generations within a cycle.
Wielandt Method

• **Longer fission chains**
 – Decrease the number of cycles required for convergence (same CPU time).
 – Reduces bias in error estimates.

• **Average chain length:**

\[L = 1 + \frac{k_0}{\Delta_W} \]

Wielandt Method Results

Apparent vs. Empirical Error of the Two Cylinder Benchmark
Wielandt Method Results

Mutual Information of the Two Cylinder Benchmark for Varied Chain Lengths

Mutual Information vs. Average Fission Chain Length

Wielandt Method Results

Apparent vs. Empirical Error of the B&W Core Benchmark

Relative Error vs. Average Fission Chain Length
Wielandt Method Results

Mutual Information of the B&W Core Benchmark for Varied Chain Lengths

Average Fission Chain Length

Mutual Information

2D quarter-core PWR (Nakagawa & Mori model)
+ Explicit fuel pins & rod channels, 17x17
+ 120 M active neutrons for each calculation
+ Tally fission rates in each quarter-assembly

Plot relative error in quarter-assemblies along diagonal
Observations

- Mutual information seems to provide a good measure of variance bias in MOST problems.

- B&W Core benchmark shows disagreement.
 - More investigation needed.

- Variance bias is local in nature.
 - Mutual information is global.
 - No clear relationship to k-effective.

Dominance Ratio

- Measures effect of higher order modes.

- Stochastic fluctuations excite higher modes.

- Higher dominance ratio means slower decay, and more correlation.

\[\rho = \frac{k_1}{k_0} \]
Dominance Ratio vs. Mutual Information

Relation to MacMillan Factor

- MacMillan’s factor:

\[
M = 1 + \frac{2r}{1 - \rho}
\]

- Mutual information curve appears to follow similar asymptotic trend.
 - Suggestive, but more analysis needed.
Conclusions & Future Work

• Mutual information is a useful diagnostic to get general feel of correlation effects.
 – No definitive connection to variance bias.

• Very suggestive for many problems.

• Still issues:
 – Connection to global k-effective estimates
 – B&W core convergence issues
 – Local variations

Questions?