Title: An Expanded Criticality Validation Suite for MCNP

Author(s): R.D. Mosteller, F.B. Brown, B.C. Kiedrowski

An Expanded Criticality Validation Suite for MCNP

R.D. Mosteller, F.B. Brown, B.C. Kiedrowski

Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM, 87545, USA, mosteller@lanl.gov

INTRODUCTION

Criticality safety practitioners are required to validate the computational tools used in their work. The computer code validation effort typically involves analyzing a set of experimental benchmarks that are similar to the problem of interest and then assessing the accuracy of the computed results vs. benchmark measurements. That is, the focus is to determine whether a general-purpose tool performs adequately for a specific problem of interest. Computer code developers are faced with a different validation task, that of determining whether the code performs properly for a wide range of different possible problems.

The “correctness” of a computer code is traditionally discussed in terms of the verification and validation processes. Verification involves performing a series of calculations to determine whether a code faithfully solves the equations and physical models it was designed to solve. Verification may involve comparison to other codes, to analytic benchmarks, or to experiments. Validation involves a determination of whether the code faithfully reproduces reality for a particular range of applications of interest. Validation may involve assessing the verification problems (to ensure that end-user applications are bounded), comparing calculations to relevant experiments, or performing scoping studies (to ensure that parameter changes produce expected changes in results). While code developers can thoroughly verify their codes, validation is problematic because of the very wide range of different problems and different code options. Validation performed by code developers must necessarily be general, involving suites of problems chosen to broadly represent and span the range of possible applications.

The MCNP [1] code developers have done so using over a dozen verification/validation suites for testing general classes of problems, including regression/installation, shielding, electrons, photons, reactor kinetics parameters, variance reduction, etc. The MCNP validation suites should not be used as an absolute indicator of the accuracy or reliability of MCNP5 or the nuclear data libraries. Many of the benchmarks are taken from sequences of similar benchmarks, and the sequence as a whole may display sensitivities that a single case cannot capture. Nonetheless, the suites can provide a general indication of the overall performance of a given library, and can alert the user to unexpected or unintended consequences resulting from changes to nuclear data. In addition, the test suites can help to identify areas where improvements are needed. This paper focuses on verification/validation of MCNP5 for criticality safety and reactor applications.

PREVIOUS MCNP CRITICALITY SUITES

Two criticality validation suites for the MCNP Monte Carlo code have been used at Los Alamos National Laboratory (LANL) for nearly a decade. Those criticality validation suites were created independently by the Nuclear Data team and Monte Carlo teams. However, there is some overlap between them as well as inconsistencies. In addition, neither adequately addresses certain areas of nuclear data. Consequently, an expanded criticality validation suite [2] has been created that incorporates many of the benchmarks in those two suites, eliminates overlaps, resolves inconsistencies, and fills some of the gaps that neither of them addresses.

The nuclear data team’s suite [3,4] initially included 86 separate benchmarks but eventually expanded to 93 benchmarks. The suite is used primarily for nuclear data testing. Nearly all of the benchmarks in that suite are taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments [5] or from the Cross Section Evaluation Working Group (CSEWG) benchmark book [6]. They include several sets of related benchmarks so that the effects of parameter variations such as enrichment, reflector thickness, or solution content can be evaluated. However, the suite contains only fast metal systems and thermal solution systems. It does not include any lattice benchmarks, any benchmarks with intermediate spectra, or any benchmarks with low enriched uranium (LEU) fuel.

The Monte Carlo team subsequently created a suite [7] of 27 criticality benchmarks to test changes to the MCNP Monte Carlo code and to its distributed nuclear data libraries. That suite eventually expanded to 31 benchmarks [8], although not all of the benchmarks in the initial version of the suite are retained in the later version. The objective was to have a wide representation of fissile materials, reflector materials, and spectra. The suite includes at least three fast, one intermediate, and two thermal benchmarks for 235U systems, highly enriched uranium (HEU) systems, intermediate enriched uranium (IEU) systems, and plutonium systems. For LEU systems, it only includes thermal benchmarks, because they cannot reach criticality with intermediate or fast spectra. The three subcategories for fast systems are benchmarks that are unreflected, reflected by a heavy material, and
reflected by a light material. The subcategories for thermal systems are lattice and solution benchmarks. However, the suite does not include subsets of related benchmarks that would permit parameter variations to be studied. All of the benchmarks in the Monte Carlo team’s suite are taken from the Handbook.

EXPANDED VALIDATION SUITE

All of the benchmarks in the expanded validation suite are taken from the Handbook, with the exception of one benchmark (ieu-met-fast-007-case-4) that has been submitted for inclusion but has not yet been approved. The name of each benchmark is the same as the identifier for the evaluation in the Handbook from which it is taken. In those cases where the evaluation includes more than one case, the benchmark name appends the case number to the identifier. Reference [2] provides a complete description of the Expanded Validation Suite, with descriptions and complete MCNP input specifications for each of the problems.

The benchmarks in the expanded validation suite are divided according to the isotope that produces the majority of fissions: 233U, 235U, or 239Pu. The 235U benchmarks are further subdivided by the fractional 235U content in the uranium as HEU, IEU, or LEU. HEU contains 60 wt.% or more 235U, and LEU contains 5 wt.% or less. IEU therefore contains between 5 wt.% and 60 wt.% 235U. The 239Pu category is generalized to include all plutonium isotopes and hereafter is referred to simply as plutonium. The number of cases in the expanded validation suite in each of these categories is shown in Table I, which also indicates the degree of overlap with the benchmarks in the two previous criticality validation suites.

It should be noted that the expanded validation suite uses 5 wt.% as the dividing line between LEU and IEU, whereas the Handbook uses 10 wt.% for fuel used in commercial nuclear reactors in the United States.

The expanded validation suite follows the guidelines from the Handbook in classifying spectra as fast, intermediate, or thermal. Fast benchmarks are those in which the majority of fissions is caused by neutrons with energy greater than 100 kev, and thermal benchmarks are those in which the majority of fissions is caused by neutrons with energies less than 0.625 eV. Benchmarks with intermediate spectra therefore are those in which the majority of fissions is caused by neutrons with energies between 0.625 eV and 100 keV. The spectral distribution of the benchmarks in the expanded validation suite is summarized in Table II.

Table III-IX provide a summary of the Handbook cases selected for the 119 problems in the Expanded Validation Suite. This collection of benchmark problems has also been transmitted to the CSEWG evaluators.

MCNP IMPLEMENTATION

The Expanded Validation Suite with 119 problems is packaged in the same fashion as other MCNP test suites, as part of the Testing directory in the MCNP distribution. It is currently available for both MCNP5 and MCNP6 (under development). At this writing, it is not included with the MCNP5 distribution package from RSICC; plans are to include it in the next update. Many of the problems include different input for specifying either ENDF/B-VI cross-section data, ENDF/B-VI + T16 data, or ENDF/B-VII.0 data. For some nuclides, elemental datasets are used with ENDF/B-VI data, while isotopes must be listed explicitly for ENDF/B-VII.0. For convenience, users can specify “make ENDF=6”, “make ENDF=16”, or “make ENDF=7” to instruct MCNP to use the proper problem input and cross-section libraries. Other datasets can be specified with trivial modifications to the testing Makefile.

The full suite of 119 problems is run using 600 cycles for each problem with 10,000 neutrons/cycle, with the first 100 cycles discarded for source convergence. Results
are based on 5 M active neutron histories for each problem, giving standard deviations for k_{eff} in the range 0.0002-0.0005. For the entire suite, a total of 714 M neutron histories is run. The entire suite takes about 7 hr 45 min (wallclock) to run on a 3 GHz dual quad-core Mac Pro using 8 threads for all problems (about 60 cpu-hr total), with MCNP5-1.60 and ENDF/B-VII.0 data. For regression testing purposes, where the primary goal is to confirm code consistency and stability, a shortened version of the suite can be run in about 30 minutes.

Along with the problem input and testing Makefile, a perl script is provided to automatically collect all calculated k_{eff} and standard deviation results. The results are listed nicely, with accompanying Handbook reference values and flags to indicate significant differences between calculated and benchmark results.

CONCLUSIONS

The Expanded Validation Suite provides a significant advance in the quality assurance and verification/validation of MCNP for criticality problems. The careful selection of Handbook benchmark problems that span the expected application space provides the required broad coverage of code applicability. For validation purposes, it is expected that the suite will be used with different cross-section libraries, e.g., ENDF/B-VII.1, to broadly assess the impact of library improvements. For practitioners, the suite may also serve as a starting point for validating MCNP and its data libraries for their specific applications.

REFERENCES

Table III. U-233 Benchmark Characteristics

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Form</th>
<th>Shape</th>
<th>Moderator and/or Reflector</th>
<th>Benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Metal</td>
<td>Sphere</td>
<td>Unreflected</td>
<td>u233-met-fast-001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HEU</td>
<td>u233-met-fast-002-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal uranium</td>
<td>u233-met-fast-003-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tungsten</td>
<td>u233-met-fast-004-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beryllium</td>
<td>u233-met-fast-005-case-1</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Solution</td>
<td>Sphere</td>
<td>Beryllium</td>
<td>u233-sol-inter-001-case-1</td>
</tr>
<tr>
<td>Thermal</td>
<td>Solution</td>
<td>Sphere</td>
<td>Unreflected</td>
<td>u233-sol-therm-001-case-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UO$_2$ + ZrO$_2$</td>
<td>Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>u233-comp-therm-001-case-3</td>
</tr>
</tbody>
</table>

Table IV. HEU Benchmark Characteristics, Part I

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Form</th>
<th>Shape</th>
<th>Reflector</th>
<th>Benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Metal</td>
<td>Sphere</td>
<td>Unreflected</td>
<td>heu-met-fast-001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal uranium</td>
<td>heu-met-fast-003-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tungsten</td>
<td>heu-met-fast-003-case-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickle</td>
<td>heu-met-fast-003-case-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel</td>
<td>heu-met-fast-013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duralumin</td>
<td>heu-met-fast-022-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aluminium</td>
<td>heu-met-fast-012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Graphite</td>
<td>heu-met-fast-019-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beryllium oxide</td>
<td>heu-met-fast-009-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beryllium</td>
<td>heu-met-fast-009-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Polyeethylene</td>
<td>heu-met-fast-011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>heu-met-fast-020-case-2</td>
</tr>
<tr>
<td>Cylinder</td>
<td>Unreflected</td>
<td></td>
<td></td>
<td>heu-met-fast-015</td>
</tr>
<tr>
<td>Lattice</td>
<td>Paraffin</td>
<td></td>
<td></td>
<td>heu-met-fast-026-case-c-11</td>
</tr>
</tbody>
</table>
Table V. HEU Benchmark Characteristics, Part II

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Form</th>
<th>Shape</th>
<th>Reflector, Moderator and/or Buffer</th>
<th>Benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate</td>
<td>UH₂</td>
<td>Cylinders</td>
<td>Natural uranium</td>
<td>heu-comp-inter-003, case-6</td>
</tr>
<tr>
<td>Metal</td>
<td>Cylinders</td>
<td>Graphite, copper</td>
<td></td>
<td>heu-met-inter-006-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu-met-inter-006-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu-met-inter-006-case-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu-met-inter-006-case-4</td>
</tr>
<tr>
<td>Thermal</td>
<td>Solution</td>
<td>Sphere</td>
<td>Unreflected</td>
<td>heu-sol-therm-013-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu-sol-therm-013-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu-sol-therm-013-case-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu-sol-therm-013-case-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu-sol-therm-032</td>
</tr>
</tbody>
</table>

Table VI. IEU Benchmark Characteristics

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Form</th>
<th>Shape</th>
<th>Reflector and/or Buffer</th>
<th>Benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Metal</td>
<td>Sphere</td>
<td>Unreflected</td>
<td>ieu-met-fast-003-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ieu-met-fast-005-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ieu-met-fast-006-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ieu-met-fast-008-case-2</td>
</tr>
<tr>
<td></td>
<td>Cylinders</td>
<td>Unreflected</td>
<td></td>
<td>ieu-met-fast-001-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ieu-met-fast-001-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ieu-met-fast-001-case-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ieu-met-fast-001-case-4</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Plate</td>
<td>Lattice</td>
<td>Normal uranium, steel</td>
<td>mix-met-fast-008-case-7</td>
</tr>
<tr>
<td>Thermal</td>
<td>Lattice</td>
<td>Water</td>
<td>ieu-comp-therm-002-case-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cylinder</td>
<td>Unreflected</td>
<td></td>
<td>leu-sol-therm-027-case-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-sol-therm-027-case-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-sol-therm-027-case-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-sol-therm-027-case-49</td>
</tr>
</tbody>
</table>

Table VII. LEU Benchmark Characteristics

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Form</th>
<th>Shape</th>
<th>Buffer and/or Reflecter</th>
<th>Benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>UO₂</td>
<td>Lattice</td>
<td>UO₂ Rods, Water</td>
<td>leu-comp-therm-008-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-comp-therm-008-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-comp-therm-008-case-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-comp-therm-008-case-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-comp-therm-008-case-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-comp-therm-008-case-11</td>
</tr>
<tr>
<td>Solution</td>
<td>Sphere</td>
<td>Water</td>
<td>Unreflected</td>
<td>leu-sol-therm-002-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>leu-sol-therm-002-case-2</td>
</tr>
</tbody>
</table>

Table VIII. Pu Benchmark Characteristics, Part I

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Form</th>
<th>Shape</th>
<th>Reflector and/or Buffer</th>
<th>Benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Metal</td>
<td>Sphere</td>
<td>Unreflected</td>
<td>pu-met-fast-001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-002-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>heu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mix-met-fast-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal uranium</td>
<td>pu-met-fast-006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depleted uranium</td>
<td>pu-met-fast-020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thorium</td>
<td>pu-met-fast-008-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tungsten</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel</td>
<td>pu-met-fast-023-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-026-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aluminum</td>
<td>pu-met-fast-009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>graphite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-023-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Be++</td>
<td>pu-met-fast-018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Polyethylene</td>
<td>pu-met-fast-024-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>pu-met-fast-011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beryllium</td>
<td>pu-met-fast-021-case-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beryllium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-met-fast-021-case-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lattice</td>
<td>pu-met-fast-003-case-103</td>
</tr>
</tbody>
</table>

Table IX. Pu Benchmark Characteristics, Part II

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Form</th>
<th>Shape</th>
<th>Reflector and/or Moderator</th>
<th>Benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate</td>
<td>Mixture</td>
<td>Homogeneous</td>
<td>Hydrogen, graphite</td>
<td>pu-comp-inter-001</td>
</tr>
<tr>
<td></td>
<td>MOX</td>
<td>Lattice</td>
<td>Water</td>
<td>mix-comp-therm-002-case-p0-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mix-comp-therm-002-case-p0-31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mix-comp-therm-002-case-p0-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mix-comp-therm-002-case-p0-33</td>
</tr>
<tr>
<td>Thermal</td>
<td>Sphere</td>
<td>Unreflected</td>
<td></td>
<td>pu-sol-therm-009-case-3a</td>
</tr>
<tr>
<td></td>
<td>Solution</td>
<td></td>
<td></td>
<td>pu-sol-therm-011-case-16-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-sol-therm-001-case-18-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-sol-therm-001-case-18-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-sol-therm-002-case-1</td>
</tr>
<tr>
<td></td>
<td>Cylinder</td>
<td></td>
<td></td>
<td>pu-sol-therm-018-case-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pu-sol-therm-003-case-1</td>
</tr>
</tbody>
</table>