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Validation of MCNP6.1 for Criticality Safety of  
Pu-Metal, -Solution, and -Oxide Systems 

 
Brian C. Kiedrowski, Jeremy L. Conlin, Jeffrey A. Favorite, Albert C. Kahler,  

Alyssa R. Kersting, D. Kent Parsons, Jessie L. Walker 
 
 

ABSTRACT 
 
Guidance is offered to the Los Alamos National Laboratory Nuclear Criticality Safety division towards developing 
an Upper Subcritical Limit (USL) for MCNP6.1 calculations with ENDF/B-VII.1 nuclear data for three classes of 
problems: Pu-metal, -solution, and -oxide systems. A benchmark suite containing 1,086 benchmarks is prepared, and 
a sensitivity/uncertainty (S/U) method with a generalized linear least squares (GLLS) data adjustment is used to 
reject outliers, bringing the total to 959 usable benchmarks. For each class of problem, S/U methods are used to 
select relevant experimental benchmarks, and the calculational margin is computed using extreme value theory. A 
portion of the margin of subcriticality is defined considering both a detection limit for errors in codes and data and 
uncertainty/variability in the nuclear data library. The latter employs S/U methods with a GLLS data adjustment to 
find representative nuclear data covariances constrained by integral experiments, which are then used to compute 
uncertainties in keff from nuclear data. The USLs for the classes of problems are as follows: Pu metal, 0.980; Pu 
solutions, 0.973; dry Pu oxides, 0.978; dilute Pu oxide-water mixes, 0.970; and intermediate-spectrum Pu oxide-
water mixes, 0.953. 
 
1. Introduction 
 
This document offers guidance to determine an Upper Subcritical Limit (USL) for three classes of problems: Pu-
metal, Pu-solution, and Pu-oxide systems. This document is in accordance with ANSI/ANS-8.24 [1], “Validation of 
Neutron Transport Methods for Nuclear Criticality Safety Calculations,”  and is meant to be used by the Los Alamos 
National Laboratory (LANL) Nuclear Criticality Safety (NCS) division. 
 
A description of the computer platform, code version, and nuclear data is given. The verification done for the 
computer code system is documented and the change control is detailed. 
 
Next, the comprehensive NCS benchmark suite containing 1,086 critical experiment benchmarks is described. The 
validation suite covers a wide range of fissionable materials and forms as well as spectra, configurations, etc. 
Sensitivity/uncertainty (S/U) methods are used with a generalized linear least squares (GLLS) nuclear data 
adjustment to perform rejection of outlier benchmarks; this methodology is described. Next, the S/U-based method 
of selecting relevant benchmarks from the comprehensive suite minus the rejected outliers is discussed. 
 
The area of applicability (AOA) is detailed for each class of problem through parametric studies using process 
models, which are described herein. The calculational margin for the three classes of problems is computed using 
extreme value theory (EVT). The approaches are described along with the results for each class of problem. 
 
Guidance is offered for developing the margin of subcriticality. Three factors are considered herein. The first 
considers the quality of the transport code and the data libraries and the possibility of errors (i.e., bugs) having 
escaped notice. The second considers the effect of uncertainties and variations from nuclear data libraries. The 
uncertainties from nuclear data libraries are quantified using a GLLS nuclear data adjustment along with standard 
S/U error propagation techniques. The third discusses how sensitivities to parameters must be considered in the 
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context of the validation, and how modeled systems must fall within the AOA of this validation. Actual numbers are 
given for the first two factors, and determining an appropriate margin of subcriticality for the third is left to the 
analyst as it is inexorably linked to the model being analyzed. 
 
1.1. Responsibilities of NCS Analysts 
 
This document should be viewed as a starting point for the NCS analyst. It is the responsibility of the analyst to 
ensure that the computational model being analyzed resides within the defined AOA of this validation. If this is so, 
the analyst may use the calculational margins derived herein. If the computational model is not within the defined 
AOA, the NCS analyst must either expand the AOA using validation, or explain any potential effect of using 
unvalidated nuclear data, and apply any adjustments to the model and/or control deemed appropriate. 
 
It is still up to the analyst to develop a reasonable margin of subcriticality to ensure that the process is subcritical. 
This document gives a portion of the margin of subcriticality that is related to the code and data but does not address 
issues related to the specific processes and whether they are within the AOA. The analyst should consider using the 
guidance herein as a starting point, but it is ultimately up to the analyst to provide any additions to the margin of 
subcriticality. 
 
In any case, it is never acceptable to simply use the numbers in this document without further analysis. 
 
1.2. Definitions 
 
The definitions in this validation are consistent with those specified in the ANS-8.24 standard. In the case of bias, 
the sign is arbitrary. For this validation report, the sign of the bias is taken such that a positive bias is 
nonconservative, i.e., a positive bias implies that the code predicts keff lower than what the benchmark experiments 
would indicate. In other words, 
 

Bias = Benchmark keff – Calculated keff . 
 

This choice was made so that each quantity for determining the USL has a positive sign. 
 
2. Verification of the Computer Code System 
 
ANS-8.24 defines the computer code system as, “A calculational method, computer hardware, and computer 
software (including the operating system).” The computer platform is the Moonlight cluster at LANL hosted and 
maintained by the High-Performance Computing (HPC) division. The hardware consists of nodes having two Eight-
Core Intel Xeon model E5-2670 processor chips at 2.6 GHz. The operating system is Clustered High Availability 
Operating System (CHAOS). CHAOS is a Livermore-modified version of RedHat Linux. 
 
The transport software (calculational method) used is MCNP6.1 [2], a mature, widely-used, production, continuous-
energy and -angle Monte Carlo package. While many changes to core coding have occurred between MCNP5 and 
MCNP6, the software development process ensured that results for criticality problems did not change between the 
two versions. The executables themselves may give slightly different answers because of numerical roundoff as a 
consequence of using more modern versions of the Intel compiler; but, when the same compiler is used, the results 
match exactly. Any changes in results because of compiler version are not statistically significant and are therefore 
judged to be, statistically speaking, the same [3]. 
 
The nuclear data are from the ENDF/B-VII.1 library [4]. The data were processed by NJOY99.393 [5] into the ACE 
format that MCNP can read; the formatted data libraries are maintained by the LANL Nuclear Data Team.  
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ANS-8.24 Sec. 4.1 states, “Verification of the computer code system shall be completed prior to validation. Correct 
installation and operation of the computer code system should be documented.” The verification of the installation 
on Moonlight is checked by ensuring the MCNP6.1 Regression and Keff Verification test suites give expected 
answers. The Regression suite is a set of 157 short test problems that run a broad portion of the MCNP6.1 coding, 
including nuclear criticality (KCODE) calculations. The Keff Verification suite contains 10 selected analytic test 
problems from Ref. 6 to check if MCNP6.1 is solving the keff eigenvalue problem correctly. 
 
These two suites were run. The Regression suite shows zero differences from the defined reference results, 
indicating the installation of MCNP6.1 on Moonlight was successful. Table I documents the results of the Keff 
Verification suite. �$�O�O�� �D�J�U�H�H�� �Z�L�W�K�L�Q�� ���1 of the analytic value, which confirms that the algorithms in MCNP6.1 are 
computing keff correctly. 
 
Local copies of the MCNP6.1 executable and nuclear data are placed in a separate space, and the NCS division is 
responsible for maintaining these copies. ANS-8.24 Sec. 4.2 states, “The computer code system to be validated shall 
be placed under an appropriate configuration control program. Any change to the computer code system shall be 
evaluated to determine its effect on the validation.” The configuration control program is enforced by UNIX 
permission groups. Only the owner of the files, a single individual, has the ability to modify the executables and 
nuclear data. This could, in principle, be overridden by the HPC system administrators, but their doing so 
accidentally and remaining undetected is not credible. The MCNP6.1 executable itself is linked statically where 
possible during compilation and build; this makes it not credible that changes could be made to a professionally 
maintained, high-traffic computing cluster, such as Moonlight, that somehow affect the executable in such a way to 
influence calculations and have those changes go unnoticed. 
 
Note that this validation exclusively covers criticality (KCODE) calculations. No fixed-source (SDEF) calculations 
are included. Tallies are not part of the validation. The problems do not use any variance reduction techniques 
beyond those that are on by default, nor are periodic and white boundary conditions exercised, etc., and while using 
these features should be fine, this would be non-compliant with the ANS 8.24 standard. When in doubt, NCS 
analysts should contact the MCNP Development Team. 
 

Table I. Analytic keff Verification Results 

Case Name 
Analytic  

keff  
MCNP 
keff  Unc.  

prob11  Ua- 1- 0- IN  2.25000  2.25000  0.00000  
prob14  Ua- 1- 0- SP 1.00000  1.00006  0.00010  
prob18  Uc- H2O(2) - 1- 0- SP 1.00000  1.00005  0.00011  
prob23  UD2O- 1- 0- CY 1.00000  1.00000  0.00006  
prob32  PUa- 1- 1- SL 1.00000  0.99995  0.00011  
prob41  UD2Ob- 1- 1- SP 1.00000  1.00003  0.00007  
prob44  PU- 2- 0- IN  2.68377  2.68377  0.00003  
prob54  URRa- 2- 0- SL 1.00000  1.00007  0.00013  
prob63  URRd- H2Ob(1) - 2- 0- ISLC  1.00000  0.99993  0.00006  
prob75  URR- 6- 0- IN  1.60000  1.59999  0.00001  

 
3. Validation Benchmarks 
 
Benchmarks were obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) 
Handbook [7]. The ICSBEP Handbook separates benchmark experiments by dominant fissile isotope (and 
enrichment if uranium), fissile form, and spectrum. For this work, a suite of 1,086 benchmarks was obtained from 
the previous NCS validation suite [8], the Mosteller Expanded Criticality Suite for MCNP validation [9], the Kahler 
validation suite for ENDF/B-VII.1 [10], and, when needed and unavailable elsewhere, benchmark models were 
prepared by the NCS division and independently reviewed as part of this validation. A summary of benchmarks by 



4 
 

their ICSBEP Handbook identifiers is given in Table II. A full listing is given in Appendix A along with their 
benchmark and MCNP6.1 (with ENDF/B-VII.1) calculated keff and keff uncertainties. 
 
The benchmark suite was created to be comprehensive for a large set of possible applications. The S/U methods to 
be discussed select the relevant benchmarks for a particular application. 
 
The geometric configurations of the various benchmarks cover a range of slab, spherical, and cylindrical geometries. 
Some have a single unit, while others have multiple interacting units or are in lattice configurations. The 
configurations are bare or reflected, and, in some cases, have interstitial materials. For a Monte Carlo code like 
MCNP6.1, the surfaces are defined analytically and ray-tracing routines to track neutrons through the geometry are 
robust. Unlike deterministic methods, there are no problems associated with quadrature sets, mesh spacing, 
homogenization, etc. Therefore when using MCNP6.1, geometry not being covered in the validation is not as 
significant a concern as coverage of materials and spectra. 
 
Review of the experiments used as benchmarks show that they were drawn from a number of experimental series, 
conducted by different critical facilities, by different experimenters, over a range of chronological time periods.  
This helps minimize any systemic issues relating to a particular facility, experimenter, or approach. 
 
The benchmarks were obtained from various sources and some were prepared by the NCS division. In all cases, the 
benchmarks were independently reviewed for accuracy at some point. While this does not preclude mistakes, it does 
significantly reduce the chance of errors because of faulty input. Also, the rejection scheme discussed in Sec. 3.1 
should reject any inputs with gross errors that produce results inconsistent with similar benchmarks. 
 
In five cases (HEU-MET-FAST-004-001 and the four cases of IEU-MET-FAST-001), the benchmark uncertainties 
are not provided by the ICSBEP Handbook. In this case, a weighted average of the variances (of those benchmarks 
with a quantified uncertainty) is used to determine representative benchmark uncertainties. The weighting factors in 
the averaging are the similarity factors discussed in Sec. 3.2. This method is consistent with Ref. 11, which states, 
“Where no documentation is located to substantiate an experimental uncertainty, engineering judgement [sic] should 
be used, based upon factors such as the typical uncertainties of similar experiments. Although this appears 
artificial, it is a more realistic assumption than assuming that there is no error associated with the 
measurements in the critical experiments” (emphasis added). 
 
In cases where two one-sided (i.e., asymmetric) benchmark uncertainties are given, the larger of the two is assumed 
for conservatism. 
 

Table II. Summary of Benchmark Suite 
ICSBEP Identifier  # Included  # After 

Rejection  
heu- met - fast  251  218  
heu- met - inter  4 2 
heu- met - therm  4 2 
heu- met - mixed  8 7 
heu- comp- inter  1 1 
heu- comp- therm  25 17 
heu- sol - therm  93 91 
ieu - met - fast  12 12 
ieu - comp- therm  1 1 
leu - comp- therm  182  178  
leu - sol - therm  27 25 
mix - met - fast  33 32 
mix - met - mixed  1 1 
mix - comp- fast  2 2 
mix - comp- inter  1 1 
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mix - comp- therm  15 15 
mix - sol - therm  21 11 
pu- met - fast  53 49 
pu- comp- fast  1 1 
pu- comp- inter  1 1 
pu- comp- mixed  34 17 
pu- sol - therm  158  141  
u233 - met - fast  10 8 
u233 - comp- therm  9 9 
u233 - sol - inter  33 23 
u233 - sol - therm  106  94 
Total  1086  959 

 
3.1. Rejection of Inconsistent Benchmarks 
 
Before selecting benchmarks, a subset of the benchmarks is rejected as outliers. This is determined by a chi-squared 
data adjustment process using nuclear data sensitivities and covariance data.  
 
Possible sources of computational bias include: poor experimental results, inadequacy of the benchmark description, 
errors in the quoted benchmark keff and uncertainty, errors in the input files, and uncertainties in the nuclear data. It 
is typically assumed that the dominant source of the computational discrepancy from experiment is a result of the 
latter, uncertainties in the nuclear data. Testing this assumption can be done by adjusting the nuclear data within 
their covariances to minimize the computational bias. Benchmarks where the bias cannot be reduced through a 
consistent adjustment of the nuclear data with the rest of the suite likely have other problems associated with them 
and are rejected. 
 
The nuclear data adjustment uses a generalized linear least squares (GLLS) method [12]. The GLLS method adjusts 
the nuclear data to minimize the chi-squared statistic. A more detailed discussion of the chi-squared statistic and 
how it is minimized may be found in Ref. 13. 
 
The GLLS method is used to find the minimum chi-squared. The value of chi-squared per degree of freedom 
(number of benchmark experiments in the set) should be unity for a perfect regression model post adjustment. In 
practice, the chi-squared statistic is significantly higher, indicating the presence of inconsistent benchmarks. 
Benchmarks are rejected using the iterative diagonal chi-squared method until the chi-squared is below 1.2. During 
this process 127 of the benchmarks (about 12%) are rejected. The number remaining for each ICSBEP class of 
benchmark is given in Table II, and the rejected benchmarks are denoted in red in Appendix A. 
 
The sensitivity coefficients [14] are generated with continuous-energy physics in MCNP6 on the energy grid 
provided by the 44-group covariance library from ORNL [15]. The nuclear data considered are elastic scattering, 
inelastic scattering, fission, capture [(n,2n), (�Q����), (n,p), (n,d), (n,t), (n,3He), (�Q���.)]���� �I�L�V�V�L�R�Q�� �W�R�W�D�O�� ������ �D�Q�G�� �I�L�V�V�L�R�Q�� �$, 
which are the ones available in the ORNL covariance library. In cases where covariance data are unavailable, a 
uniform uncorrelated (diagonal) uncertainty of 10% is assumed; this value is typically bounding of nuclear data 
uncertainties in the energy regime of interest to criticality, i.e., several MeV or less. All the validation runs used 
100,000 neutrons per cycle, 100 skip cycles, and 600 total cycles, except for the LEU-COMP-THERM-60 cases, 
which used 300 total cycles because their high level of geometric detail led to very long run times. Source 
convergence was checked for all benchmarks. 
 
The experimental benchmark correlation data from the ICSBEP Handbook (via DICE, the Database for ICSBEP that 
is available both on DVD and online [16]) are used where numerical values are provided. Unfortunately, this data is 
rather sparse, and currently none of the Pu-metal or -solution benchmarks have their correlations quantified. Since 
assigning meaningful correlation values to the set of benchmarks would require extensive studies taking years of 
effort, these benchmarks are currently assumed to be uncorrelated. This is of course not true as many benchmarks 
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used similar equipment, were in the same facility, or had common experimenters. Using a 99% confidence interval 
on the calculational margin and for setting a portion of the margin of subcriticality should provide enough 
conservatism to account for this approximation. 
 
3.2. Selection of Relevant Benchmarks 
 
Of the 959 remaining benchmarks following the rejection process, only a much smaller subset is going to be relevant 
for a particular application. Selecting which benchmarks are relevant to validating a specific application by hand can 
be a time-consuming and error-prone procedure. S/U methods are used to help automate this process based upon 
quantitative measures of neutronic similarity.  
 
Recall from Sec. 3.1 that the dominant source of computational bias is typically from uncertainties in the nuclear 
data. The GLLS rejection method, which uses a nuclear data adjustment, retains over 88% of the benchmarks, 
supporting this assertion about the source of computational bias. If this is true, a correlation coefficient ck has been 
shown to adequately select benchmarks with similar sources of computational bias [12]. The ck parameter applies 
the sensitivity coefficients to nuclear data (generated with continuous-energy physics in MCNP6.1) and the nuclear 
data covariances. A ck of unity implies that the two systems being compared are neutronically identical and therefore 
have identical sources of bias. A ck of zero implies that the two systems are completely dissimilar. Positive values of 
ck quantify the degree of similarity. Negative values of ck indicate antisimilarity of benchmarks, but this rarely 
occurs in practice. 
 
Generating the ck uses the same energy grid for the sensitivity profiles and the same covariance data as used for the 
GLLS nuclear data adjustment for the rejection of benchmarks. 
 
A set of process models for the Pu metals, solutions, and oxides are prepared and the ck are generated for those 
application models with respect to all the benchmarks. The ck are sorted and the largest ck is found. This value 
determines how many benchmarks are required for the validation – as to be discussed in Sec. 5, adding more 
benchmarks for the method for computing the calculational margin only increases it. A larger maximum ck indicates 
that there exists a benchmark that is more similar to the application being analyzed than had the maximum ck been 
smaller. It therefore makes more sense to require a greater number of benchmarks so long as adding more 
benchmarks does not cause the calculational margin to become less conservative; it does not for the method 
employed in this validation [13]. 
 
The details of the criteria that are used to select the benchmarks are given in Ref. 13. More precisely, the selected 
benchmarks are assigned a weighting factor based upon their relative similarities to the application being analyzed. 
Reference 13 gives the criteria for which benchmarks are used for validating a specific application. The criteria are 
based upon a ranking of ck, and the total sum of benchmark weighting factors is determined by the maximum ck 
from the benchmark suite. The equation in Ref. 13 giving the criteria has two parameters: A, representing the 
minimum number of perfect benchmarks, and B, representing a penalty factor for a lower maximum ck than unity. 
The values were chosen empirically based on standard statistical “rules of thumb”  about sample sizes and to ensure 
desired behavior where benchmark coverage is lacking. The values are A = 25 and B = 100. To illustrate the impact 
of the choice of these parameters, in practice these values enforce the use of about 50 benchmarks for metals, about 
45 benchmarks for solution concentrations with much benchmark data available and about 75 where there is less 
data, and about 100 benchmarks for oxides where the benchmark availability is poor. 
 
Weighting the benchmarks with the similarity factors is consistent with ANS-8.24 Sec. 6.3.1. The standard specifies 
that “Data may be weighted to account for benchmark uncertainties or other indications of benchmark quality (e.g., 
degree of characterization or degree of applicability)”  (emphasis added). 
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3.3. Characterization of Benchmarks 
 
The process to select benchmarks is automated via the S/U techniques. The assumption with this automation is that 
there is a sufficiently large number of benchmarks in the suite. The ck parameter by itself, while useful, does not 
state which physical parameters are useful for trending the calculational margin and how to interpret the bias results. 
This section studies various physical parameters for the metals, solutions, and oxides. Any trends are identified and 
their impact on the calculational margin is given. 
 
If trending is performed on the calculational margin or USL, then the NCS analyst must understand the behavior of 
the bias as a function of those parameters. 
 
3.3.1. Pu Metals 
 
There are 53 PU-MET-FAST (PMF) benchmarks in the suite, which are typically the most relevant benchmarks for 
this class of problems (Pu metals). The GLLS rejection algorithm identified four of the benchmarks as inconsistent, 
leaving 49 PMF benchmarks for the validation. Energy of Average Lethargy causing Fission (EALF) and Pu-
isotopic fractions (both Pu-240 and Pu-241) are parameters that are considered to characterize these benchmarks.  
 
The spectra of the PMF benchmarks cover a range of EALF between 7.3 keV and 1.26 MeV. There are no obvious 
gaps in the energy spectral coverage. Pu-240 atomic fractions (relative to all Pu) of the PMF benchmarks range from 
0% (according to the benchmark specifications of PMF-045, where the actual amount of Pu-240 is unknown and its 
impact on keff was factored into the benchmark uncertainty using a sensitivity study) to about 10%. There is one data 
point with about 20% Pu-240 (PMF-002-001) and none in between. Caution should be used if Pu-240 atomic 
fractions of greater than 10% are present in the application space, and additional margin may be appropriate. The 
Pu-241 concentrations of the benchmarks vary from 0% (presumably where it was unknown and factored into the 
benchmark uncertainty) to about 1.7%; PMF-002-001 is a notable different case with a Pu-241 concentration of 
3.1%. Likewise, similar caution should be applied if the Pu-241 concentration is greater than 1.7%. 
 
Figures 1-3 give the bias in keff as a function of EALF, Pu-240 composition, and Pu-241 composition. In regard to 
EALF, there is a visible and known (conservative) bias for the PMF benchmarks with softer, but still fast, spectra 
[9]. There is no statistically significant trend in keff for either Pu-240 or Pu-241 concentration of the PMF 
benchmarks, indicating that extrapolation to pure Pu-239 should not introduce additional uncertainty. The 
calculational margin computed in Sec. 5 is also displayed on these figures. 
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�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) and 
calculational margin at the 99% confidence level for Pu-metal systems as a function of Energy of Average 
�/�H�W�K�D�U�J�\�� �F�D�X�V�L�Q�J�� �)�L�V�V�L�R�Q�� ���(�$�/�)������ �(�U�U�R�U�� �E�D�U�V�� �����1���� �D�U�H�� �W�K�H�� �F�R�P�E�L�Q�D�W�L�R�Q�� �R�I�� �E�H�Q�F�K�P�D�U�N�� �D�Q�G�� �F�D�O�F�X�O�D�W�L�R�Q�D�O��
uncertainty. Data points marked with an “×” were those rejected by the generalized linear least squares 
method. 

 



9 
 

 
�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) and 
calculational margin at the 99% confidence level for Pu-metal systems as a function of 240Pu atom fraction. 
�(�U�U�R�U�� �E�D�U�V�� �����1���� �D�U�H�� �W�K�H combination of benchmark and calculational uncertainty. Data points marked with 
an “×” were those rejected by the generalized linear least squares method. 
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�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) and 
calculational margin at the 99% confidence level for Pu-metal systems as a function of 241Pu atom fraction. 
�(�U�U�R�U�� �E�D�U�V�� �����1���� �D�U�H�� �W�K�H�� �F�R�P�E�L�Q�D�W�L�R�Q���R�I�� �E�H�Q�F�K�P�D�U�N�� �D�Q�G���F�D�O�F�X�O�D�W�L�R�Q�D�O���X�Q�F�H�U�W�D�L�Q�W�\���� �'�D�W�D���S�R�L�Q�W�V�� �P�D�U�N�H�G���Z�L�W�K��
an “×” were those rejected by the generalized linear least squares method. 
 
3.3.2. Pu Solutions 
 
There are 158 PU-SOL-THERM (PST) benchmarks, which are the most relevant for the benchmarking of Pu 
solutions or metal-water mixes. The GLLS rejection algorithm identified 17 of the benchmarks as inconsistent, 
leaving 141 PST benchmarks for the validation. 
 
The trending parameters that appear to make the most sense for the Pu solutions or metal-water mixes are Pu 
concentration and EALF. Figures 4 and 5 display the bias in the benchmarks as a function of those two respective 
parameters. The calculational margin computed in Sec. 5.2 is also displayed as a function of both of those 
parameters; the calculational margin only extends over a portion of the range in the plot, and this is shown explicitly 
in the figures. 
 
Figures 6 and 7 give the calculational bias as a function of Pu-240 and Pu-241 atomic fractions. No trending is 
performed on these parameters since the NCS models typically use pure Pu-239. 
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�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) and 
calculational margin at the 99% confidence level for Pu solution/metal-water mix systems as a function of Pu 
�V�R�O�X�W�L�R�Q�� �F�R�Q�F�H�Q�W�U�D�W�L�R�Q�� �L�Q�� �J���/���� �(�U�U�R�U�� �E�D�U�V�� �����1���� �D�U�H�� �W�K�H�� �F�R�P�E�L�Q�D�W�L�R�Q�� �R�I�� �E�H�Q�F�K�P�D�U�N�� �D�Q�G�� �F�D�O�F�X�O�D�W�L�R�Q�D�O��
uncertainty. Data points marked with an “×” were those rejected by the generalized linear least squares 
method. 
 



12 
 

 
�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) and 
calculational margin at the 99% confidence level for Pu solution/metal-water mix systems as a function of 
�(�Q�H�U�J�\���R�I���$�Y�H�U�D�J�H���/�H�W�K�D�U�J�\���F�D�X�V�L�Q�J���)�L�V�V�L�R�Q�����(�$�/�)�������(�U�U�R�U���E�D�U�V�������1�����D�U�H���W�K�H���F�R�P�E�L�Q�D�W�L�R�Q���R�I���E�H�Q�F�K�P�D�U�N���D�Q�G��
calculational uncertainty. Data points marked with an “×” were those rejected by the generalized linear least 
squares method. 
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�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) for Pu 
solution/metal-water mix systems as a function of 240�3�X���D�W�R�P���I�U�D�F�W�L�R�Q�����(�U�U�R�U���E�D�U�V�������1�����D�U�H���W�K�H���F�R�P�E�L�Q�D�W�L�R�Q���R�I��
benchmark and calculational uncertainty. Data points marked with an “×” were those rejected by the 
generalized linear least squares method. 
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�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) for Pu 
solution/metal-water mix systems as a function of 241�3�X���D�W�R�P���I�U�D�F�W�L�R�Q�����(�U�U�R�U���E�D�U�V�������1�����D�U�H���W�K�H���F�R�P�E�L�Q�D�W�L�R�Q���R�I��
benchmark and calculational uncertainty. Data points marked with an “×” were those rejected by the 
generalized linear least squares method. 
 
3.3.3. Pu Oxides 
 
The benchmark database for Pu-oxide systems is very sparse compared to the metals and solutions. These consist of 
the PU-COMP-MIXED (PCM) series, PU-COMP-FAST-004 (PCF-004), and PU-COMP-INTER-001 (PCI-001). 
The PCM benchmarks are PuO2-polystyrene(C8H8) compacts in various configurations. Unfortunately, these 
benchmarks, while still acceptable for the ICSBEP Handbook, are anecdotally considered to be of marginal quality. 
PCF-004 is the ZPR-3 assembly reflected by nickel. PCI-001 is a k�’  experiment with graphite moderation. 
 
Overall there are 36 benchmark cases. The GLLS rejection algorithm identified 17 of the benchmarks as inconsistent 
(all from the PCM series, supporting the assertion that these experiments are marginal), leaving only 19 benchmarks 
for the validation. 
 
It also turns out that for dry Pu-oxide systems, which have a softer spectrum than bare Pu-metal systems, Pu-metal 
systems reflected by low-Z materials (e.g., water, polyethylene, beryllium) tend to act as reasonable surrogates 
because those reflectors soften the spectrum to a similar degree as in dry Pu-oxide systems. For dilute Pu oxide-
water mixtures, the Pu-solution benchmarks are good surrogates because they have similar neutronically important 
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isotopes (Pu, hydrogen, and oxygen), but in slightly different proportions. In the dry and dilute regimes, the analysis 
in Secs. 3.3.1 and 3.3.2 should apply. 
 
Because of the wide range of energy spectra and the need for metal and solution benchmarks, EALF is the only 
trending parameter used for the Pu oxides. Figure 8 shows the bias for all three classes of Pu benchmarks (oxides, 
solutions, and metals) along with the trendline in the calculational margin for the oxides (as computed in Sec. 5.3). 
As confirmed by Fig. 8, the Pu benchmark data in the intermediate range is scant. The large increase in the 
calculational margin is because of a single benchmark, PCM-001-005, that could not be rejected by the GLLS 
method.  
 

 
�)�L�J���� ������ �ûkeff or bias in keff (Bias = Benchmark keff – Calculated keff; positive bias is nonconservative) and 
calculational margin at the 99% confidence level for Pu oxide/oxide-water mix systems as a function of 
�(�Q�H�U�J�\���R�I���$�Y�H�U�D�J�H���/�H�W�K�D�U�J�\���F�D�X�V�L�Q�J���)�L�V�V�L�R�Q�����(�$�/�)�������(�U�U�R�U���E�D�U�V�������1�����D�U�H���W�K�H���F�R�P�E�L�Q�D�W�L�R�Q���R�I���E�H�Q�F�K�P�D�U�N���D�Q�G��
calculational uncertainty. Data points marked with an “×” were those rejected by the generalized linear least 
squares method. 
 
4. Area of Applicability and Representative Process Models 
 
To perform the validation and define the area of applicability (AOA), representative process models were prepared 
for each class of problem. These computational models represent bounding cases of processes and are similar to 
those used by the NCS division as part of their workflow.  




































































































