Title: Comparison of Iterative Time-Eigenvalue Methods with Discrete Ordinates and Monte Carlo

Author(s): Kiedrowski, Brian C.

Issued: 2014-06-13
Comparison of Iterative Time-Eigenvalue Methods with Discrete Ordinates and Monte Carlo

Brian C. Kiedrowski

Los Alamos National Laboratory

June 17, 2014
Abstract

A standard approach in Monte Carlo and deterministic methods for computing the α (time absorption) eigenvalue involves solving a k eigenvalue problem, and then finding the what insertion of a fictitious α/v absorber or source would make $k = 1$. This talk looks at using alternative multiplicative eigenvalues, the collision c and leakage l eigenvalues, as the basis to compute α. Results suggest that in some cases, the use of the c eigenvalue may be more efficient than using the k eigenvalue.
Introduction

- Methodology
- Implementation (SN and Monte Carlo)
- Results
Motivation

- The asymptotic, logarithmic time rate of change of the neutron population (assuming no feedback) may be obtained with the α eigenvalue.
- Useful in subcritical measurements and analysis of prompt supercritical excursions in simple systems.
- A classic approach uses a k eigenvalue calculation and finds what insertion of a fictitious α/ν absorber or source would make $k = 1$.
- This work explores using a collision c and leakage l eigenvalues instead.
α-Eigenvalue Equation

- Assume separability of time in the neutron flux:

 \[\Psi(r, \hat{\Omega}, E, t) = n(t)\psi(r, \hat{\Omega}, E). \]

- Substitute and find the prompt α-eigenvalue transport equation:

 \[v(S + M - L - T)\psi = \alpha\psi. \]

- The time-dependent solution is a sum of eigenfunctions and exponentials:

 \[\Psi(r, \hat{\Omega}, E, t) = \sum_{j=0}^{\infty} \psi_j(r, \hat{\Omega}, E) e^{\alpha_j t}. \]
A Classic Solution Technique

- Stiffness of the problem makes the α-eigenvalue equation difficult to solve with standard iteration methods.
- Classic approach involves constructing a hybrid $k-\alpha$ equation:

$$\left(\frac{\alpha}{V} + L + T - S\right)\psi = \frac{1}{k}M\psi.$$

- Guess α, solve for k using standard iteration methods (e.g., power iteration).
- Find value of α that makes $k = 1$.
- Iterate until consistent value of k and α are found.
Generalized Multiplicative Eigenvalue Formulation

- The k eigenvalue is one of many possible multiplicative eigenvalues.
- Define the generalized multiplicative eigenvalue x:

\[
\left(\frac{\alpha}{v} + H_x \right) \psi = \frac{1}{x} G_x \psi.
\]

- Here H_x and G_x are operators for the left- and right-hand sides of the transport equation, depending upon the choice of x.
- E.g., for $x = k$, $H_x = L + T - X$ and $G_x = M$.
- Criticality condition is $x = 1$, regardless of choice of x.
- Question: Are some choices of x more computationally efficient than others?
Hybrid Solution Technique

- Inner iteration i, solve for eigenvalue x:
 \[x_{i+1} = \frac{N_{i+1}}{N_i} x_i. \]

- Once x is converged, perform outer iteration j, solve for α:
 \[\alpha_{j+1} = \alpha_j + \frac{x_j - 1}{\tau_{x,j}}, \]

 where τ_x is the appropriate neutron lifetime given by
 \[\tau_x = \frac{\langle \frac{1}{v} \psi \rangle}{\langle G_x \psi \rangle}. \]

- Iterate until α converged.
Collision and Leakage Eigenvalue Forms

- Two forms involve a collision c and leakage l eigenvalue:

$$\left(\frac{\alpha}{v} + L + T\right) \psi = \frac{1}{c} (S + M) \psi,$$

$$\left(\frac{\alpha}{v} + L\right) \psi = \frac{1}{l} (S + M - T) \psi.$$

- Eigenvalue c uniformly adjusts multiplication of all collisions to achieve balance.
- Eigenvalue l uniformly adjusts material atomic densities to achieve balance.
- $k = c = l = 1$ are equivalent.
Discrete Ordinates (SN) Implementation

- Uses standard 1-D diamond difference transport sweep.
- k eigenvalue solution has standard power iteration on transport and fission source.
- c and l only iterate on transport source.
- In all cases, modify Σ_t by adding current α/ν.
 - k scales the fission source $M\psi$.
 - c scales the collision source $(S + M)\psi$.
 - l scales the collision source and modified total cross section $\Sigma_t + \alpha/\nu$.
- Compute lifetime from fluxes, and iterate until α converges.
Monte Carlo (MC) Implementation

- Simulate batches of particles in power iteration for fixed number of inner iterations satisfying convergence and statistical uncertainties.
- For k eigenvalue, treat fission as absorption (bank neutrons for next iteration).
- For c and l eigenvalues, treat all collisions as absorption (banking neutrons).
- In all cases, modify Σ_t by adding current α/ν.
 - k scales the number of fission neutrons banked.
 - c scales the number of collision neutrons banked.
 - l scales the total cross section and number of collision neutrons banked.
- Lifetime estimate with collision tallies.
- Iterate until α converges, and then keep running iterations until uncertainty on α is sufficiently small.
Convergence of Leakage Eigenvalue

- The l eigenvalue is not guaranteed to exist (i.e., no global density adjustment can make the transport equation balance).
- When α step is too large such that l does not exist, take smaller steps until it does.
- Empirically, the l eigenvalue can exhibit oscillatory and very slow convergence (possibly a complex dominance ratio?).
- Simple acceleration is to take midpoint of oscillation (improves convergence rate by factor of 2 or more).
- α will also oscillate, and midpoint technique improves convergence there as well.
SN Results

- Three multigroup slab test problems:
 - Bare, fast (4-group), vary slab thickness
 - Reflected, fast (4-group), vary reflector thickness
 - Reflected, thermal (8-group), vary fuel/moderator ratio.
- Use S_{64} Gauss-Legendre quadature, 1000 total spatial elements.
- Speedup (wall-clock time ratio) to assess performance relative to k eigenvalue:

\[
\text{Speedup} = \frac{\text{WallTime}_x}{\text{WallTime}_k}.
\]
SN, Bare-Fast Case
SN, Reflected-Fast Case

![Graph showing speedup vs. reflector thickness (cm)]
SN, Reflected-Thermal Case
MC Results

- Same three multigroup problems:
 - Bare, fast (4-group), vary slab thickness
 - Reflected, fast (4-group), vary reflector thickness
 - Reflected, thermal (8-group), vary fuel/moderator ratio.
- Use 10,000 neutron histories per inner iteration, 50 skip, 500 active inner iterations per outer iteration.
- 250 active outer iterations were used.
- Figure of merit \((1/R^2 T)\) ratio relative to \(k\) eigenvalue:

\[
\text{Performance} = \frac{\text{FOM}_x}{\text{FOM}_k}.
\]
MC, Bare-Fast Case

The graph shows the relative performance of core thickness in centimeters. The X-axis represents the core thickness (in cm) ranging from 18 to 30, while the Y-axis represents the relative performance. Two lines are plotted: one in red labeled 'c-a' and one in green labeled 'l-a'.

- **Red Line ('c-a')**: Decreases as the core thickness increases.
- **Green Line ('l-a')**: Decreases initially but then increases as the core thickness increases.

The data points indicate a clear trend where the relative performance decreases with increasing core thickness for both 'c-a' and 'l-a'.
MC, Reflected-Fast Case
MC, Reflected-Thermal Case

![Graph showing relative performance vs. fuel atomic fraction. The graph plots the relationship between the two variables, with data points for different cases labeled as 'c-a' and 'l-a'.]
Discussion

- SN results suggest greater efficiency gains.
- Need to compare against state-of-the-art SN methods for computing α.
- Unfortunately, multigroup MC results show lower efficiency at worst and margin gains at best.
- How does this compare in continuous energy?
About two years ago, implemented prototype for \(c-\alpha \) methods in research version of MCNP6.

Since all histories are a single track, may use Newton-Rhapson to compute \(\alpha \) that makes \(c = 1 \) after \(\alpha \) source is converged.

Significant improvements observed over MCNP’s internal \(k-\alpha \) method, but is an “apples to oranges” comparison of methods because:

- Different approaches used. Difficult to do Newton-Rhapson with multiple track histories.
- \(k \) eigenvalue routines in MCNP are inherently more complicated having more capabilities.
- Correlation effects of the \(c \) eigenvalue are not well understood (most likely a larger effect than \(k \)).
Noise in c Versus k (3D-PWR)
Continuous-Energy MC Test Problems

- Four test problems in order of complexity:

1. Supercritical, bare HEU sphere (Godiva with elevated density)
2. Supercritical, Be-reflected HEU sphere
3. Slightly subcritical can of Pu-Nitrate solution
4. Nearly critical 3-D Pressurized Water Reactor (Hoogenboom-Martin benchmark)
Continuous-Energy MC Results

<table>
<thead>
<tr>
<th>Case</th>
<th>(k-\alpha)</th>
<th>(c-\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha)</td>
<td>FOM</td>
</tr>
<tr>
<td>1</td>
<td>0.176</td>
<td>(9.2 \times 10^3)</td>
</tr>
<tr>
<td>2</td>
<td>1.468</td>
<td>(5.9 \times 10^4)</td>
</tr>
<tr>
<td>3</td>
<td>Failed</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>(2.425 \times 10^{-5})</td>
<td>19</td>
</tr>
</tbody>
</table>
Summary & Future Work

- α eigenvalue iterations explored with multiplication k, collision c, and leakage l eigenvalues.
- SN results show moderate improvement with using c as opposed to k.
- MC results on equivalent multigroup problems shows general disadvantage to using other eigenvalues over k.
- MC results for CE problems are suggestive, but are not a fair comparison. More investigation needed.
Acknowledgments

- Funding provided by the U.S. DOE/NNSA Advanced Scientific Computing Program and Nuclear Criticality Safety Program.
Questions?