Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
ENDFtk: A Robust C++/Python API for Reading/Writing ENDF-formatted Data

Nathan A. Gibson and Wim Haeck

Tuesday, July 13, 2021
Outline

• Status and Capabilities
• Examples:
 – Read PFNS Data
 – Perturb Capture XS
 – Visualize Angular Distribution
• Future Work
• Getting `ENDFtk`
Status and Capabilities

- C++ and Python API
- Fully documented API connected to Python’s `help()`
- Used in NJOY and increasing number of other internal efforts
- Open source
- Latest release: v0.3.0
Examples

• Read PFNS Data
• Perturb Capture XS
• Visualize Angular Distribution
Example 1: Read PFNS Data

Historical question:
How has estimate of $<E_{out}>$ from U-235 fission evolved through ENDF releases?
Example 1: Read PFNS Data

```python
import ENDFtk

# open file, parse section
tape = ENDFtk.tree.Tape.from_file('/path/to/endf/file')
section = tape.MAT(mat).MF(5).MT(18).parse()

# switch on distribution
distribution = section.partial_distributions[0].distribution
if isinstance(distribution, ENDFtk.MF5.TabulatedSpectrum):
    incoming, outgoing = from_tabulated_spectrum(distribution)
elif isinstance(distribution, ENDFtk.MF5.MaxwellianFissionSpectrum):
    incoming, outgoing = from_maxwellian(distribution)
elif isinstance(distribution, ENDFtk.MF5.WattSpectrum):
    incoming, outgoing = from_watt_spectrum(distribution)
```
Example 1: Read PFNS Data

def from_maxwellian(distribution):

 # Maxwellian parameters
 energies = distribution.energies
 thetas = distribution.thetas

 # loop over incoming energies
 energy_out = []
 for incoming, theta in zip(energies, thetas):
 average_energy = 1.5 * theta
 energy_out.append(average_energy)

 return energies[:], energy_out
Example 2: Perturb Capture XS

Motivation:
• Demonstrate read/write
• Perturbations needed for sensitivity analyses, UQ
• Reading MF3 common visualization need
• Writing could be useful for evaluators

Task:
• Double cross section values for MF3/MT102 in Fe-56
Example 2: Perturb Capture XS

```python
import ENDFtk, numpy as np

# read existing tape
tape = ENDFtk.tree.Tape.from_file('fe56.endf')
section = tape.MAT(2631).MF(3).MT(102).parse()

# manipulate data
new_data = np.array(section.cross_sections) * 2
```
Example 2: Perturb Capture XS

```python
# create new section
perturbed = ENDFtk.MF3.Section(
    mt=102, zaid=section.ZA,
    awr=section.AWR, qm=section.QM,
    qi=section.QI, lr=section.LR,
    boundaries=section.boundaries,
    interpolants=section.interpolants,
    energies=section.energies,
    xs=data
)

# print to string
print(perturbed.to_string(2631, 3))
```
Example 2: Perturb Capture XS

2.605600+4 5.545443+1
7.646431+6 7.646431+6
 159 2

1.000000-5 0.000000+0 2.530000-2 0.000000+0 1.000000+1 0.000000+02631 3102
3.000000+1 1.360000-3 6.000000+1 1.840000-3 1.000000+2 2.320000-32631 3102
3.000000+2 3.600000-3 6.000000+2 4.400000-3 1.000000+3 4.800000-32631 3102
2.000000+3 4.800000-3 3.000000+3 4.560000-3 6.000000+3 3.600000-32631 3102
1.000000+4 2.880000-4

159 2

1.000000-5 0.000000+0 2.530000-2 0.000000+0 1.000000+1 0.000000+02631 3102
3.000000+1 2.720000-3 6.000000+1 3.680000-3 1.000000+2 4.640000-32631 3102
3.000000+2 7.200000-3 6.000000+2 8.800000-3 1.000000+3 9.600000-32631 3102
2.000000+3 9.600000-3 3.000000+3 9.120000-3 6.000000+3 7.200000-32631 3102
1.000000+4 5.760000-3 2.000000+4 4.240000-3 2.500000+4 3.920000-32631 3102
3.000000+4 3.680000-3 5.000000+4 2.880000-3 7.000000+4 2.240000-32631 3102
1.000000+5 0.000000+0 5.000000+5 0.000000+0 5.010000+5 1.644000-32631 3102
5.500000+5 1.644000-3 5.510000+5 1.860000-3 6.000000+5 1.860000-32631 3102
6.010000+5 2.796000-3 6.500000+5 2.796000-3 6.510000+5 5.340000-32631 3102
7.000000+5 5.340000-3 7.010000+5 2.496000-3 7.500000+5 2.496000-32631 3102
Example 3: Visualize Angular Distribution

Need for visualization
- What’s really in this ENDF file?
- Does it compare to application format?
- Does my updated evaluation match experimental data?
Example 3: Visualize Angular Distribution

```python
import ENDFtk

# open file, parse section
tape = ENDFtk.tree.Tape.from_file('/path/to/endf/file')
section = tape.MAT(mat).MF(6).MT(600).parse()
product = section.reaction_products[0]
distribution = product.distribution

# distribution details
law = product.LAW
if law == 2:
    assert(isinstance(distribution, ENDFtk.MF6.DiscreteTwoBodyScattering))
    # ...
```
Example 3: Visualize Angular Distribution

```python
import numpy as np
from numpy.polynomial.legendre import legval

# more details
data = distribution.distributions[0]
energy = distribution.incident_energies[0]

# linearize
grid = np.linspace(-1, 1, 300)
coeffs = np.array([1] + dist.coefficients[:])
coeffs = (2*np.arange(dist.NL+1) + 1) * coeffs / 2
values = legval(grid, coeffs)
```
Future Work

• Goal: Complete ENDFtk in FY21
 - Mean values: Complete MF20-28
 - Covariances: Complete MF30-40
 - NJOY formats: GENDF, ERRORR
Getting ENDFtk

Repository, installation instructions:
https://github.com/njoy/ENDFtk

Contact us:
njoy@lanl.gov